
Teo Meng Shin, Ryan - Project Portfolio

Project: AB&B
AB&B is a java-based address book application. The application allows the user to easily manage his/her
contacts' information. Although there is a GUI, main interactions from the user are done via CLI. While there are
features which benefit the generic user, the team has included features tailored specifically for administrative
personnel.

The objective of this portfolio is to document notable contributions I have made to the application. A record of
my contributions towards other similar projects can be found towards the end of the document.

Code contributed: [Functional code
(https://github.com/CS2103AUG2017-T10-B3/main/blob/master/collated/main/AceCentury.md)] [Test code
(https://github.com/CS2103AUG2017-T10-B3/main/blob/master/collated/test/AceCentury.md)]

Enhancement Added: Deletion by Name

External behavior

Start of Extract [from: User Guide]

Deleting a person by name : deletebyname

Deletes the specified person from the address book. Case insensitive.

Format: deletebyname NAME

Deletes the person with the specified NAME .

The name refers to the exact name of the person in the address book.

The name is case insensitive.

Examples:

deletebyname John Doe
Deletes John Doe in the address book, if the person exists.

https://github.com/CS2103AUG2017-T10-B3/main/blob/master/collated/main/AceCentury.md
https://github.com/CS2103AUG2017-T10-B3/main/blob/master/collated/test/AceCentury.md

If no person with a matching name can be found, it will update the displayed person list to provide suggestions
on possible persons to delete.

If there is more than 1 person with the exact same name, it will update the displayed person list to show all the
persons with the same name. You will then be prompted to use the delete command.

End of Extract

Justi�cation

To allow users to easily delete a contact with their name instead of having to scroll through the displayed person
list to obtain the corresponding index. It also provides some time saving benefits by integrating a find function
with the deletion query in the event that the user cannot recall the exact name of the contact to delete.

Implementation

Start of Extract [from: Developer Guide]

DeleteByName Command
The DeleteByNameCommand extends the UndoableCommand class. It enables the deletion of a person from
AB&B when given an input Name parsed by DeleteByNameCommandParser .

The class diagram of the command is shown below:

Figure 3.1A - Class Diagram of DeleteByNameCommand

In Figure 3.1A the DeleteByNameCommand class is highly dependent on the Person package as well as the
Model of AB&B. This dependency allows it to carry out its delete operation. The Model of AB&B will be
directly updated within the command.

The self calls of DeleteByNameCommand in the executeUndoableCommand() method are illustrated in the
code fragment below:

The sequence diagram of the Main Success Scenario of the command is shown below:

Figure 3.1B - Sequence Diagram of DeleteByNameCommand

The sequence of operations carried out in Figure 3.1B are detailed below:

1. The execute("deletebyname John Doe") command is called on the LogicManager .

2. LogicManager calls the parse method on AddressBookParser .

@Override
public CommandResult executeUndoableCommand() throws CommandException {
 this.personList = model.getAddressBook().getPersonList();
 ReadOnlyPerson personToDelete = obtainPersonToDelete();

 if (personToDelete == null) { // No matching name found
 provideSuggestions();
 }
 //...deletion logic...
}

3. AddressBookParser parses the command word, deletebyname and calls parse on
DeleteByNameCommandParser to parse the remaining argument, "John Doe" .

4. DeleteByNameCommandParser creates a new DeleteByNameCommand , d , and returns it all the way
back to LogicManager .

5. LogicManager calls the execute() method on d , a DeleteByNameCommand .

6. DeleteByNameCommand calls itself to obtain p , the person to delete.

7. DeleteByNameCommand deletes the person, p , from the Model , and generates a new CommandResult ,
result .

8. The result is returned to the LogicManager which returns it back to the UI .

Advantage(s) versus DeleteCommand :

Allows users to carry out delete operations regardless of the last shown list.

Disadvantage(s) versus DeleteCommand :

Requires the exact name of the person to be deleted in order to perform a successful deletion.

Cannot delete a person if there is another person with the exact name present in the AB&B.

In order to mitigate the disadvantages when compared to DeleteCommand , DeleteByNameCommand also
suggests possible persons with similar names for deletion. The Model is also updated to display the list of
suggested persons, similar to FindCommand .

DeleteByNameCommand also updates the Model to list all persons with matching names if there is more than
one person with the exact same name as the person to be deleted. This is an enhancement over the traditional
FindCommand as it will not list any other persons whose names match part of the query. It will then prompt
users to utilise the DeleteCommand .

Design Considerations

Aspect: Implementation of DeleteByNameCommand

Current choice: Filter the list of persons present in AB&B and creating a helper Predicate ,
CaseInsensitiveExactNamePredicate .

Pros:

Filtering from entire list of persons present in the AB&B facilitates a complete search.

Creating a helper class CaseInsensitiveExactNamePredicate allows for better exception handling of
DeleteByNameCommand to show a list of persons with matching names. It also improves abstraction,
allowing it to be maintained and updated easily.

Cons:

Filtering from entire list of persons present in AB&B can be time consuming.

Creating an additional class CaseInsensitiveExactNamePredicate present within the Person
package which is currently unused by any other function.

Aspect: Implementation of DeleteByNameCommandParser

Alternative 1 (current choice): Create a separate command word, deletebyname .

Pros:

Not overloading the delete command word, providing clear distinctions for the user.

Cons:

Creating an additional and lengthier command word for the user to enter.

Creating an additional class within the Parser package.

Alternative 2: Overload DeleteCommandParser

Pros:

Achieving different results with the same command word.

Removing the need for extra classes within the Parser package.

Cons:

Parsing logic for DeleteCommandParser becomes more complicated.

End of Extract

Enhancement Added: Export to CSV

External behavior

Start of Extract [from: User Guide]

Exporting the data : export

Saves the current data in the address book into a CSV (Comma-Separated Values) file. The file will be saved in
the same location where you stored the application. The file will be named AddressBookData.csv .

Format: export

End of Extract

Justi�cation

To allow users to easily make use of the data stored in AB&B with other applications. An example would be to
upload the CSV file into an email client as a quick and simple way to mass update email addresses.

Implementation

Start of Extract [from: Developer Guide]

Export
The ExportCommand extends the Command class. It allows users to export the current AB&B data into a CSV
file.

The class diagram of the command is shown below:

Figure 3.6A - Class Diagram of ExportCommand

From Figure 3.6A, the ExportCommand depends on java.io to carry out the file IO operations to create the
CSV file. It also depends on the Model class and Person package in order to extract the required information
to export.

The self calls of ExportCommand in the execute() method are illustrated in the code fragment below:

The sequence diagram of the command is shown below:

@Override
 public CommandResult execute() throws CommandException {
 this.currentData = model.getAddressBook().getPersonList();

 if (currentData.isEmpty()) {
 throw new CommandException(MESSAGE_EMPTY_ADDRESS_BOOK);
 }

 if (fileExists()) {
 deleteFile();
 }

 createFile();
 writeData();
 return new CommandResult(MESSAGE_EXPORT_SUCCESS);
 }

Figure 3.6B - Sequence Diagram of ExportCommand

The sequence of operations carried out in Figure 3.6B are detailed below:

1. The execute("export") command is called on the LogicManager .

2. LogicManager calls the parse method on AddressBookParser .

3. The parse method creates a new ExportCommand which returns an ExportCommand , e , all the way
back to LogicManager .

4. LogicManager calls the execute() method on e , an ExportCommand .

5. ExportCommand obtains the PersonList from the Model .

6. ExportCommand checks if an exported file exists. If the file exists, it will delete the file.

7. ExportCommand generates the exported file through a series of self calls and generates a new
CommandResult , result .

8. The result is returned to the LogicManager which returns it back to the UI .

Design Considerations

Aspect: Construction of Strings

Alternative 1 (current choice): Use StringBuilder

Pros:

Can easily construct the String due to the mutability of StringBuilder .

Cons:

Increasing dependency on external classes, specifically the StringBuilder class.

Alternative 2: Use String only.

Pros:

Reducing dependency on additional classes.

Cons:

Increasing number of re-assignments of resultant String is required as it is not mutable.

Aspect: Generating Person Data

Alternative 1 (current choice): "Hard-code" the data to obtain from a ReadOnlyPerson .

Pros:

Accelerates code execution.

Cons:

Increasing coupling with ReadOnlyPerson .

Reducing code adaptability should new fields be added to ReadOnlyPerson .

Alternative 2: Generate person data according to the fields present in ReadOnlyPerson .

Pros:

Increasing code adaptability should new fields be added to ReadOnlyPerson .

Cons:

Decelerates code execution.

Increasing difficulty and time required to properly implement.

End of Extract

Enhancement Proposed: Ability to suggest frequently accessed
contacts
Users may need to frequently look up a particular contact for numerous reasons. By having such a feature, it
would save them time and effort if AB&B were able to suggest or prioritise frequently accessed contacts in the
displayed person list.

Other contributions
Made the command word case-insensitive. (Pull request #42
(https://github.com/CS2103AUG2017-T10-B3/main/pull/42))

Offered DeleteByNameCommand for re-use (Re-Use Offer
(https://github.com/nus-cs2103-AY1718S1/forum/issues/121))

Contributions to other teams' projects
Export function re-used by Tourist Book . (Implementation
(https://github.com/CS2103AUG2017-F09-B2/main/pull/78)) (Re-Use Offer
(https://github.com/nus-cs2103-AY1718S1/forum/issues/158))

Bug reports for ContactPro (Issues #62 (https://github.com/CS2103AUG2017-T12-B1/main/issues/62), #63
(https://github.com/CS2103AUG2017-T12-B1/main/issues/63), #71
(https://github.com/CS2103AUG2017-T12-B1/main/issues/71))

Bug report for AcquaiNote (Issue #80 (https://github.com/CS2103AUG2017-T10-B1/main/issues/80))

Last updated 2017-11-12 23:31:04 +08:00

https://github.com/CS2103AUG2017-T10-B3/main/pull/42
https://github.com/nus-cs2103-AY1718S1/forum/issues/121
https://github.com/CS2103AUG2017-F09-B2/main/pull/78
https://github.com/nus-cs2103-AY1718S1/forum/issues/158
https://github.com/CS2103AUG2017-T12-B1/main/issues/62
https://github.com/CS2103AUG2017-T12-B1/main/issues/63
https://github.com/CS2103AUG2017-T12-B1/main/issues/71
https://github.com/CS2103AUG2017-T10-B1/main/issues/80

