
Audio Effects Project on Basys 3 FPGA

Student 1: Kennard Ng

Student 2: Ryan Teo

In this project, we designed a sound device that had a basic feature of reading sound inputs
from a microphone and releasing sound outputs. This device has several modes based on the
user’s inputs. Below are some special features that we have added onto the basic machine.

Features:

1. Musical Tone Generator (Ryan)
2. Hello Playback (Ryan)
3. Volume Indicator (Kennard)
4. Output Delay (Kennard)
5. Pitch Shift (Kennard)
6. Techno Tone Modifier (Kennard and Ryan)

User guide

Feature Input Description Output

Musical
Tone

Generator

SW[0] —
SW[7]

Select the following switches to play the
specified note in the 4th octave:

SW[0]: C
SW[1]: D
SW[2]: E
SW[3]: F
SW[4]: G
SW[5]: A
SW[6]: B

Note: If more than 1 switch is activated,
the note corresponding to the lowest
activated switch number will be
produced.

Example:

Suppose the following switches are
activated:

SW[1], SW[2], SW[5], SW[6]

Corresponding
musical note output

The D note (corresponding to SW[1])
will be played.

Select the following switch the change
the output note to the 3rd octave:

SW[7]

Hello
Playback

PB_C Push this button to playback "Hello"
continuously. Push it again to stop the
playback.

Note: The “Hello” playback takes
precedence over all other
functionality, including the microphone
pass-through. When it is activated, all
other features will be disabled,
regardless of their activation state.

Example:

Suppose SW[0] (C note output) is
activated. PB_C is now pressed. The
output sound will be “Hello” playback.

Spoken “hello” output

Volume
Indicator

(DEFAULT) This feature has a dual volume
indicator. Facing the Basys 3,
the leftmost volume indicator will be the
display the output of the microphone,
while the rightmost volume indicator will
display the microphone input.

Take note that:

● The output volume indicator
uses LED[15] to LED[9].

● The input volume indicator uses
LED[0] to LED[6]

● LED[7] and LED[8] are
unasserted and serve as to
separate the two volume
indicators.

● LED[15] and LED[0] are always
asserted to indicate that both
volume indicators are functional.

By default the volume indicator will
represent the 7 most significant bits of
the volume. A value of 011 0111
represents 0110 111x xxxx. The least

LED[15] to LED[9]
LED[0] to LED[6]
Volume indicator
output

significant bit of the volume indicator.

The most significant bit for the output
volume indicator is LED[9] while its least
significant bit is LED[15]. The most
significant bit for the input volume input
indicator is LED[6] while its least
significant bit is LED[0].

SW[15] When this switch is turned on, the
volume indicator changes into a pseudo
linear volume indicator. The number of
LEDs being lit up increase with the
amplitude of the sound. Louder
output/input means that more leds will
be turn on and be displayed.

The LEDs will light up from the leftmost
LED to the rightmost LED, LED[9] for
the output volume indicator and it will
light up from the rightmost LED to the
leftmost LED, LED[6] for the input
volume indicator.

LED[15] to LED[9]
LED[0] to LED[6]
Pseudo-linear volume
indicator output

Output
Delay

SW[14] When this switch is turned on, the
sound output of the device (except the
“hello” playback and pitch shift) will be
delayed by 0.25 seconds.

Delayed Microphone
output

SW[14] and
SW[13]

When these switches are turned on, the
sound output of the device (except the
“hello” playback and pitch shift) will be
delayed by 0.5 seconds.

Note: You can also playback the sound
output in the past 0.5s.

1. Flick SW[13] on.
2. Speak into the mic.
3. Immediately flick SW[14] on.

Delayed Microphone
output (variable)

Pitch Shift SW[12] When this switch is turned on, the
device will increase the pitch of your
voice by approximately 2 times and
output your pitch-shifted voice

Pitch shifted Sound
output

SW[12] and
SW[11]

When these switches are turned on, the
device will increase the pitch of your
voice by approximately 3 times and
output your pitch shifted voice

Pitch shifted Sound
output (variable)

Techno
Tone

Modifier

SW[12] When SW[12] is activated, it will modify
the musical note currently being output
into a techno tone. Works in conjunction
with the octave switch as well.

You can also assert SW[12] with
SW[13]. Doing so will increase the
number of notes you have.

In total, we have 28 different techno
notes that you can play.

Example:

Suppose SW[6] (B note output) and
SW[12] is activated.

The output sound will be a techno-
modified sound based on the B note.

Corresponding
techno tone output

Implementation

Feature Description

Filter We implemented a filter in order to achieve clearer sound being output by the
AMP. We applied basic principles of wave filtering, which was to eliminate
abnormally high and low signal values. This was done through simple bit
shifting.

Code snippet below
—————————————————————————————————
speaker_out <= ((sound_out >> 3) << 1);
—————————————————————————————————

Musical Tone
Generator

The corresponding musical notes are generated using a simple square wave
generator with the specified frequency of the note. However, as the
generated output is only 1 bit, it is amplified before being passed to the DAC.

Code snippet below
—————————————————————————————————
module CSoundProducer(
 input clock,
 output reg [11:0] sound
);
 reg count = 0;
 CLK_WITH_F Cslowclock (clock, 26'd191_570, slowclock);
 always @ (posedge slowclock)
 begin
 count <= ~count;
 sound <= count * 12'd4000; //amplification
 end
endmodule
—————————————————————————————————

SW[7] (octave selector) is passed into the generator to determine the octave
of the note.

Code snippet below
—————————————————————————————————
 assign Csound = octave ? Csound2 : Csound1;
 assign Dsound = octave ? Dsound2 : Dsound1;
 assign Esound = octave ? Esound2 : Esound1;
 assign Fsound = octave ? Fsound2 : Fsound1;
 assign Gsound = octave ? Gsound2 : Gsound1;
 assign Asound = octave ? Asound2 : Asound1;
 assign Bsound = octave ? Bsound2 : Bsound1;
—————————————————————————————————

I have decided to short-circuit the switches such that only 1 note will be

played at any time. This is due to the fact that superimposing multiple tones
tends to create distortion in the output sound, unlike a real musical
instrument.

Code snippet below
—————————————————————————————————
assign sound = switches[0] ? Csound :
 switches[1] ? Dsound :
 switches[2] ? Esound :
 switches[3] ? Fsound :
 switches[4] ? Gsound :
 switches[5] ? Asound :
 switches[6] ? Bsound :
 MIC;
—————————————————————————————————

In the code snippet above, it is evident that the MIC_IN signal is being
passed through into the musical tone generator as well. This decision was
made as it would allow us to combine multiple features to work with
modifying the MIC_IN signal and the musical tone, such as delay.

Volume
Indicator

The volume indicator measures and records the highest amplitude in a span
of time, in our case it takes the records the highest amplitude every 0.25
seconds and displays the volume using the LEDs.

To record the highest amplitude, the volume indicator records every new
sample that the microphone takes in as seen below, where LED_ARRAY_IN
represents the microphone input.

always @ (LED_ARRAY_IN) begin
 MAX_SAMPLE <= (COUNT == 26'b0) ? (LED_ARRAY_IN) :
((LED_ARRAY_IN) > MAX_SAMPLE) ? (LED_ARRAY_IN) : MAX_SAMPLE;
end

The volume indicator operates at a rate of 4Hz as seen in the code snippet
below. This rate is chosen to ensure that the volume indicator minimizes the
amount of flashing. Furthermore, most individuals with photosensitive
epilepsy will be able to use our board without having relapses. You can refer
to the link here to learn about photosensitive epilepsy.

Hence, we kept our operation rate for our volume indicator as close to 3Hz
as possible to ensure that it remains functional without causing epileptic
shocks. As such we chose a frequency of 4Hz

always @ (posedge CLK_4) begin

The code snippet below shows the logic for showing the displaying the
volume output. If isLinear is asserted, then the volume indicator will operate
in pseudo linear mode. A base value of 12’d2000 is chosen since the
sinusoidal sound wave oscillates at about volume = 12’d2048.

Note here the volume indicator operates in pseudo linear mode, where the
user has to raise his voice by a larger margin to assert the next LED, as seen
below where the increments are pseudo-linear i.e. 2000 -> 2200 -> 2450 ->
2750 etc.This feature was implemented to model a similar idea to a logarithm
function where there is a smaller rate of increase as the volume increases.

 LED_ARRAY[0] <= (isLinear) ? ((MAX_SAMPLE >= 12'd2000) ? 1 : 0) :
LED_ARRAY_IN[5];
 LED_ARRAY[1] <= (isLinear) ? ((MAX_SAMPLE >= 12'd2200) ? 1 : 0) :
LED_ARRAY_IN[6];
 LED_ARRAY[2] <= (isLinear) ? ((MAX_SAMPLE >= 12'd2450) ? 1 : 0) :
LED_ARRAY_IN[7];
 LED_ARRAY[3] <= (isLinear) ? ((MAX_SAMPLE >= 12'd2750) ? 1 : 0) :
LED_ARRAY_IN[8];
 LED_ARRAY[4] <= (isLinear) ? ((MAX_SAMPLE >= 12'd3100) ? 1 : 0) :
LED_ARRAY_IN[9];
 LED_ARRAY[5] <= (isLinear) ? ((MAX_SAMPLE >= 12'd3500) ? 1 : 0) :
LED_ARRAY_IN[10];
 LED_ARRAY[6] <= (isLinear) ? ((MAX_SAMPLE >= 12'd3950) ? 1 : 0) :
LED_ARRAY_IN[11];
 end
endmodule

The following are the input and output descriptions of the volume indicator
module:

module VOLUME_INDICATOR(
 input CLK,
 input CLK_4,
 input [11:0] LED_ARRAY_IN,
 input [25:0] VAL,
 input isLinear,
 output reg [6:0] LED_ARRAY
);

This was how the volume indicator was used in the AUDIO_FX_TOP, as
seen in the code snippet below. VOL_IN represents the input volume

indicator while VOL_OUT represents the output volume indicator.

VOLUME_INDICATOR VOL_IN (clk_20k, clk_4, MIC_in, 26'd5_000,
isLinear, volume_ind_in);
VOLUME_INDICATOR VOL_OUT (clk_20k, clk_4, volume_ind_out_IN,
26'd5_000, isLinear, volume_ind_out);

While designing the volume indicator, we incurred the problem of the output
volume indicator interfering with the quality of our sound output when
speaker_out is assigned directly as an input the output volume indicator
(probably the signals being close together resulted in more noise). As a
result, I built some flip-flops in order to remove this interference to maintain
the quality of sound of our device as seen below:

always @(posedge CLK) begin
 volume_ind_out_IN[0] = 1'b0;
 volume_ind_out_IN[1] = 1'b0;
 volume_ind_out_IN[2] = speaker_out[0];
 volume_ind_out_IN[3] = speaker_out[1];
 volume_ind_out_IN[4] = speaker_out[2];
 volume_ind_out_IN[5] = speaker_out[3];
 volume_ind_out_IN[6] = speaker_out[4];
 volume_ind_out_IN[7] = speaker_out[5];
 volume_ind_out_IN[8] = speaker_out[6];
 volume_ind_out_IN[9] = speaker_out[7];
 volume_ind_out_IN[10] = speaker_out[8];
 volume_ind_out_IN[11] = speaker_out[9];
end

volume_ind_out_IN[0] and volume_ind_out_IN[1] are assigned zeroes since
they have been removed during the filtering of our output.

Volume Delay The volume delay uses a 2D array of registers to store samples and output
the samples at a delayed rate.

Firstly, samples are stored into the 2D array. New samples are stored at
memory[0]. When there is a new sample, the previous samples will be
shifted down i.e. memory[i+1] = memory[i] . This can be seen in the code
snippet below.

reg [11:0] memory [0:(numSamples - 1)]; // stores samples of sample.
reg [13:0] i; // loop counter variable
reg [3:0] index;

always @ (posedge CLK) begin
 for(i = 0; i < (numSamples - 1); i=i+1) begin
 memory[i+1] <= memory[i]; // shift stored samples.
 end

 memory[0] <= sample; // store new sample

 index <= ((index == 4'd0) | !isPitch) ? (pitchType ? 4'd12 : 4'd8) : (index -
2'd3);

end

The volume delay feature also uses has a variable delay. If delayType is
asserted, the delay will be approximately 0.5 seconds. Otherwise, it will be
approximately 0.25 seconds.

assign delayed_sample = isPitch ? memory[index] : delayType ?
memory[(numSamples - 1)] : memory[(numSamples / 2)]; // output delayed

Pitch Shift The volume delay module also functions as a pitch shift module. As seen in
the below code snippet, an extract of the code also used in the volume delay
feature, if isPitch, then the volume delay module will function as a pitch shift.

The pitch shift module works by skipping some samples, thereby reading the
samples at a faster rate, albeit losing some samples in the process.

The index register updates differently if the isPitch is asserted. If pitchType is
asserted, the rate of change is increased, as seen in the code snipet below
too.

index <= ((index == 4'd0) | !isPitch) ? (pitchType ? 4'd12 : 4'd8) : (index -
2'd3);

assign delayed_sample = isPitch ? memory[index] : delayType ?
memory[(numSamples - 1)] : memory[(numSamples / 2)]; // output delayed

The pitch shift does not have a volume delay. The reason for this choice is
because we decided to reduce the amount of change we had to do in order
to implement the pitch shift. This is due to shortage of time and adding more
modules would add to the amount of time needed to synthesis a new design.
Furthermore, we implemented our machine as a DJ machine and we high
pitch delayed sounds are not very common. Hence, we wanted to reduce the
amount of confusion to the user and the number of buttons he had to switch
on/off to enter the different modes of our device.

Hello playback Instead of mapping it to a switch and using a button to control the play/pause
state, I have decided to control the playback directly with a button only. This
is to avoid confusion for the user as our other features have used almost all
the switches. The button is also debounced in order to prevent accidental
input. After experimentation, the ideal debouncing frequency was 10Hz for a
balance of responsiveness and accidental input filtering.

Code snippet of debounced signal in top level module below
—————————————————————————————————
single_pulse sp (clk_10, sp_button, sp_value);
—————————————————————————————————

Code snippet of debouncer below
—————————————————————————————————
module single_pulse(
 input slowclock,
 input switch,
 output pulse
);
 wire Q1;
 wire Q2;
 DFF dff_1 (slowclock, switch, Q1);
 DFF dff_2 (slowclock, Q1, Q2);

 assign pulse = Q1 && ~Q2;

endmodule
—————————————————————————————————

The data for the hello playback is stored in a ROM, which is driven at 20khz
to produce the desired sound.

Code snippet below
—————————————————————————————————
module hello_playback(
 input CLK_20k,
 output [11:0] sound
);
 reg[12:0] romIN = 0;
 wire[11:0] romOUT;

 always @ (posedge CLK_20k) begin
 romIN <= romIN + 1;
 end

 hello_playback_ROM rom (romIN, romOUT);
 assign sound = romOUT;
endmodule

—————————————————————————————————

I have also decided to give the hello playback precedence over other
features in order to preserve the clarity of the sound. This was achieved
using simple if-else logic.

Code snippet below
—————————————————————————————————
always @ (posedge CLK) begin
 if (hello_activation) begin
 speaker_out <= ((hello_soundOUT >> 3) << 1);
 end

 else if (isDelay | isPitch) begin
 speaker_out <= ((delayed >> 3) << 1);
 end

 else begin
 speaker_out <= ((sound_out >> 3) << 1);
 end
 end
—————————————————————————————————

Feedback

What did you like the most/ the least about the project

Ryan Kennard

Like:
● The ability to work with an FPGA to

implement features and see the fruits
of our effort.

Dislike:

● Generating synthesis and
implementation is an absolute pain.
Took me 1+ hour to complete a cycle
of synthesis, implementation and
bitstream generation for the integrated
project file.

Like:
● Working with the FPGA was

interesting. It was fun to work with
analog and digital conversions and
implementing various subsystems
incrementally. It also allowed us to
apply the theories we had learnt in
lectures.

Dislike:

● Different classes had different sets of
lecture notes. The Tuesday group had
more help from their GAs and
received additional information on how
they could add on such as circular
buffers. The Monday group did not
receive this assistance. It kind of felt
like we were shortchanged on the
amount of stuff we could learn.

How would you suggest that the overall project assignment be improved?

Ryan Kennard

Allocate 1 set of modules to each student. It
would allow easier collaboration as we would
be able to work on the project simultaneously
without having to meet up.

It would be better this was an individual
project. It was difficult to work on the project
as a team since it was difficult to separate
work such as integration or special feature
implementation equally. And a delay in
someone’s work can delay the other person’s
work. Also, we had to share one set of
modules, which was not a very pleasant
experience since it meant that the other
person could not test his code if he does not
have the necessary modules.

Any constructive feedback/suggestions are welcome.

Ryan Kennard

 Make the project more open-ended such that
we can build whatever we wanted based on
the principles that were taught in class.

As a team, working on this project was a pleasant experience. The feedback we have given
above were some improvements we think could be made to the module. In general, the GAs
were very friendly and helpful to our needs. We appreciate the practical lab sessions albeit the
number of hours we spent synthesizing our code. We have learnt a lot through this project and
have developed a deeper appreciation for hardware-level description languages.

